Energy cost of isometric force production after active shortening in skinned muscle fibres.
نویسندگان
چکیده
The steady-state isometric force after active shortening of a skeletal muscle is lower than the purely isometric force at the corresponding length. This property of skeletal muscle is known as force depression. The purpose of this study was to investigate whether the energy cost of force production at the steady state after active shortening was reduced compared with the energy cost of force production for a purely isometric contraction performed at the corresponding length (same length, same activation). Experiments were performed in skinned fibres isolated from rabbit psoas muscle. Skinned fibres were actively shortened from an average sarcomere length of 3.0 µm to an average sarcomere length of 2.4 µm. Purely isometric reference contractions were performed at an average sarcomere length of 2.4 µm. Simultaneously with the force measurements, the ATP cost was measured during the last 30 s of isometric contractions using an enzyme-coupled assay. Stiffness was calculated during a quick stretch-release cycle of 0.2% fibre length performed once the steady state had been reached after active shortening and during the purely isometric reference contractions. Force and stiffness following active shortening were decreased by 10.0±1.8% and 11.0±2.2%, respectively, compared with the isometric reference contractions. Similarly, ATPase activity per second (not normalized to the force) showed a decrease of 15.6±3.0% in the force-depressed state compared with the purely isometric reference state. However, ATPase activity per second per unit of force was similar for the isometric contractions following active shortening (28.7±2.4 mmol l-1 mN-1 s mm3) and the corresponding purely isometric reference contraction (30.9±2.8 mmol l-1 mN-1 s mm3). Furthermore, the reduction in absolute ATPase activity per second was significantly correlated with force depression and stiffness depression. These results are in accordance with the idea that force depression following active shortening is primarily caused by a decrease in the proportion of attached cross-bridges. Furthermore, these findings, along with previously reported results showing a decrease in ATP consumption per unit of force after active muscle stretching, suggest that the mechanisms involved in the steady-state force after active muscle shortening and active muscle lengthening are of distinctly different origin.
منابع مشابه
Skinned fibres produce the same power and force as intact fibre bundles from muscle of wild rabbits.
Skinned fibres have advantages for comparing the muscle properties of different animal species because they can be prepared from a needle biopsy taken under field conditions. However, it is not clear how well the contractile properties of skinned fibres reflect the properties of the muscle fibres in vivo. Here, we compare the mechanical performance of intact fibre bundles and skinned fibres fro...
متن کاملElastic energy storage and release in white muscle from dogfish scyliorhinus canicula
The production of work by the contractile component (CC) and the storage and release of work in the elastic structures that act in series (the series elastic component, SEC) with the contractile component were measured using white muscle fibres from the dogfish Scyliorhinus canicula. Heat production was also measured because the sum of work and heat is equivalent to the energy cost of the contr...
متن کاملEffects of taurine on Ca2(+)-dependent force development of skinned muscle fibre preparations.
The effects of the naturally occurring amino acid taurine (2-aminoethanesulphonic acid) on isometric force development were investigated using skinned muscle fibre preparations. In atrial and ventricular pig heart muscles, as well as in fibres of slow abdominal extensor muscle of crayfish, an increase of submaximal isometric force was observed in Ca2(+)-activated skinned fibre preparations at p...
متن کاملThe dependence of unloaded shortening velocity on Ca++, calmodulin, and duration of contraction in "chemically skinned" smooth muscle.
Unloaded shortening velocity, a mechanical parameter associated with the rate of cross-bridge cycling, was investigated in chemically skinned guinea pig taenia coli and hog carotid artery. Shortening velocity was measured by the technique described by Edman, whereby large length steps are rapidly imposed on the muscle and the time under unloaded conditions is determined from the isometric myogr...
متن کاملNew insights into force depression in skeletal muscle.
Force depression observed following active shortening is not well understood. Previous research suggested that force depression might be associated with a stress-induced inhibition of cross-bridges in the newly formed overlap zone following shortening. Our aim was to investigate this theory in skinned fibres and determine whether there was an inhibition of the attachment of cross-bridges or a d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 220 Pt 8 شماره
صفحات -
تاریخ انتشار 2017